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Abstract: Exploiting the azimuthal angle dependence of the density matrices we con-

struct observables that directly measure the spin of a heavy unstable particle. A novelty of

the approach is that the analysis of the azimuthal angle dependence in a frame other than

the usual helicity frame offers an independent cross-check on the extraction of the spin.

Moreover, in some instances when the transverse polarisation tensor of highest rank is van-

ishing, for an accidental or dynamical reason, the standard azimuthal asymmetries vanish

and would lead to a measurement with a wrong spin assignment. In a frame such as the

one we construct, the correct spin assignment would however still be possible. The method

gives direct information about the spin of the particle under consideration and the same

event sample can be used to identify the spins of each particle in a decay chain. A drawback

of the method is that it is instrumental only when the momenta of the test particle can be

reconstructed. However we hope that it might still be of use in situations with only partial

reconstruction. We also derive the conditions on the production and decay mechanisms

for the spins, and hence the polarisations, to be measured at a collider experiment. As

an example for the use of the method we consider the simultaneous reconstruction, at the

partonic level, of the spin of both the top and the W in top pair production in e+e− in the

semi-leptonic channel.
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1 Introduction

The Standard Model (SM) of particle physics has been successful in explaining all the

collider observables till date with a high degree of precision. This is remarkable considering

that the particle content of the model is not complete since it requires a scalar spin-less

particle, the Higgs. In the SM formulation, this particle is an integral ingredient of the

mechanism of electro-weak (EW) symmetry breaking. This mechanism is still not well

understood. For example, the fact that in the SM no symmetry protects the mass of

the spin-less Higgs poses the hierarchy problem. Any solution to these issues brings in

new particles and interactions at TeV scale with varying spin and gauge quantum number

assignment. In a collider experiment, where almost all these particles are expected to be

produced and decay to the light SM particles, the gauge quantum numbers, in principle, can

be re-constructed by adding-up the gauge quantum numbers of all the observed light SM

particles. Spin, on the other hand, shows up only in the distributions in various kinematic

variables in the production and the decay sub-processes. Since the knowledge of the spin,

along with the gauge quantum numbers, can enable us to distinguish amongst various

candidate theories of physics beyond the SM (BSM) there has been growing interest in this

subject recently in the context of the upcoming Large Hadron Collider (LHC) [1–20] and

also in the context of the proposed International Linear Collider (ILC) [21–26].

Most of the BSM models have new particles that are partners of the SM particles based

on their gauge quantum numbers assignments. However, the new particles may differ in

the spin assignments. In models with supersymmetry (SUSY), the spin of the SM partner

differs by 1
2 owing to the fermionic nature of the SUSY generators. There are however

many other models such as UED where the spin of the partner is same as in the SM. In

both kind of models a Z2 symmetry can be left over, leading to a heavy stable particle

in the spectrum which can be the dark matter candidate. In SUSY models, the lightest

neutralino, singlino, gravitino or axino can be stable, while in models with universal extra

dimensions (UED) the first Kaluza-Klein (KK) excitation of photon can be stable and is

the dark matter candidate. These dark matter candidates can not be detected directly

in collider experiments. Thus if these particles appear at the end of a decay chain, the

re-construction of spin can be non-trivial, specially at a hadron collider like LHC. Moreover

it would be also important to infer the spin, and other properties, of these dark matter

candidates since these properties are important for the indirect detection of dark matter

in astrophysical experiments.

The spin of a (new) particle determines the Lorentz structure of its couplings with the

other SM fermions and bosons. This, in a way, fixes its dominant production and decay

mechanisms. In many cases a careful study of the energy dependence of the cross section

around threshold can distinguish between spin–0 and spin–1
2 particles for example. Other

methods to determine spin involve decay particles correlators. At the heart of these more

direct methods is the decay helicity amplitude. For example, the helicity amplitude of a

particle with spin–s and helicity λ with −s ≤ λ ≤ s decaying into two particles of spins s1

– 2 –
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and s2, with helicity l1,2 respectively, can be written as [27]

M sλ
l1l2(θ, φ) =

√

2s + 1

4π
Ds∗

λl (φ, θ,−φ)Ms
l1,l2 =

√

2s + 1

4π
ei(λ−l)φds

λl(θ)Ms
l1,l2, l = l1 − l2.

(1.1)

Here Ms
l1,l2

is the reduced matrix element. This has been written most conveniently in the

rest frame of the decaying particle. In fact the helicity here is the projection of the spin on

the quantisation axis. The polar angle θ is measured w.r.t. this quantisation axis and the

azimuthal angle φ is measured around the same quantisation axis with freedom to chose

the φ = 0 plane. In most of the examples, it is useful to chose the production plane of the

decaying particle as the φ = 0 plane. Boosting along the quantisation axis will leave the

value of the helicity unchanged. The angular distribution in these angles encodes the spin

information through the rotation matrix D which factorises into an overall phase factor

ei(λ−l)φ carrying the azimuthal angle φ dependence and the ds
λl function carrying the polar

angle dependence. The latter can be expressed as [28]

ds
λl(θ) =

∑

t

(−1)t
[(s + λ)! (s − λ)! (s + l)! (s − l)!]1/2

t! (s + λ − t)! (s − l − t)! (t + l − λ)!

×
(

cos
θ

2

)2(s−t)+λ−l (

sin
θ

2

)2t+l−λ

(1.2)

with −s ≤ λ, l ≤ s. The sum is taken over all values of t which lead to non negative

factorials. The differential rates have therefore polynomial dependence on cos θ up to degree

2s and the azimuthal modulation coming from the off-diagonal elements of the density

matrix ranges up to cos(2sφ). One can construct observables to extract the degree of cos θ

and/or cos φ distribution. If the highest mode for, say, the azimuthal dependence cos(2sφ)

can be extracted this would be an unambiguous measure of the spin, s of the particle.

Other methods have been used or advocated to determine spin.

1. Exploiting the behaviour of the total cross-section at threshold for pair produc-

tion [15, 23] or the threshold behaviour in the off-shell decay of the particle [1],

2. distribution [4, 7, 11, 13, 23] in the production (polar) angle relying on a known

production mechanism,

3. comparing different spin assignments to intermediate particles in a process for a given

collider signature [1, 5, 7–10, 17–19],1

4. comparing SUSY vs UED for a given collider signature [3, 4, 6, 11, 12, 14, 16, 20, 22,

24–26],

5. extracting the (cos θ)2s polar angle dependence [2, 3, 7, 8, 14, 21, 23, 29, 30] or cos 2sφ

azimuthal angle dependence [24–26, 30] of the decay distributions.

1 In [18] a less biased approach is followed but it is still restricted to interactions involving only scalars,

spin-1/2 or spin-1 governed by dimension-4 couplings.
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The first four methods are indirect ways to assess the spin information subject to some

assumptions and can only support or falsify a hypothesis. For example, the threshold

behaviour depends not only on the spin but the parity of the particle as well [1] and for

a particle of given spin it could be used to determine its parity [31]. Further, it has been

shown [23] that for pair production in an e+e− annihilation, the threshold behaviour alone

can not determine the spin of the particle. With β the velocity of the produced particle in

the laboratory, at threshold the cross section for a scalar scales as β3 while for a spin–1/2 it

goes like β, except for Majorana fermions which can have a β3 behaviour. Note that these

βn characteristics do not take into account Sommerfeld/Coulomb [32] type corrections.

The spin-1 particle can also have threshold behaviour and production angle dependence

same as that of fermions with the only difference coming from the distributions of their

decay products. Thus, threshold behaviour and production angle distributions can at best

be used only to confirm the spin assignment not to determine it. In the second method, one

usually assumes a production topology, like for example s-channel pair production through

a gauge boson. In this method the production angle dependence will depend upon the spin

of the test particle. But still this dependence is not unique and can be obtained for higher

spin test particles.

The third and the fourth method uses numerical values of correlators or differences in

the distributions, which can be modified by the changes in the couplings or the presence

of additional particles in virtual exchange etc. Thus, one can not use this method without

having re-constructed the spectrum of the theory experimentally. The last method, which

uses decay correlators, gives either the spin of the particle or the absolute lower limit on

its spin. We note that the moments of the polar angle distribution discussed in ref. [29]

gives an upper limit on the spin of the particle.

1.1 Spin through the polar angle

Earlier studies of spin measurements used the average values of cos θ or angular asymmetry,

with appropriately defined polar angle θ, in the process of 2-body decay [29] or cascade

decay [30]. The numerical values of the angular asymmetries or the moments of angular

distribution gave estimates of the spin of the decaying particles in a model independent

way. Most of the recent spin studies using decay kinematics focus on a decay chain that

can be realised in SUSY or UED models. All the intermediate particles in the decay chains

are assumed on-shell such that there is no distortions coming from the shape of the off-

shell propagator and that it can be decomposed as a series of two body decays, simplifying

the calculations. For example, we look at a 3-body decay chain of a particle A, shown

in figure 1. We look in the rest frame of the intermediate particle C whose spin is to

be determined. Using crossing symmetry we write the matrix element for the s-channel

process AB → C → DE as [27]

MλA,λB

λD ,λE
(θBD, φ) = (2s + 1) ds

λi,λf
(θBD) eiφ(λi−λf ) Ms

λi,λf
, (1.3)

where, λi = λB − λA and λf = λD − λE . The rotation matrix ds
λi,λf

(θ) for a spin s

particle is a 2s degree polynomial in cos(θ/2) and sin(θ/2), eq. (1.2), which upon squaring

– 4 –
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A

B

E

D

C

Figure 1. The typical decay chain studied for the spin analysis of particle A via its decay into

observed particles B and D and a missing particle E.

transforms to a 2s degree polynomial in cos θ. This leads to a 2s degree polynomial form

of the angular distribution as

dΓ(A → BDE)

d cos θBD
= Q0 + Q1 cos θBD + . . . + Q2s cos2s θBD. (1.4)

Thus, we see that the degree of these polynomials is a consequence of the representation

of the particle under Lorentz or rotation group, in other words, the spin of the particle,

provided C is produced on-shell, i.e. (pD + pE)2 = p2
C = m2

C = constant.

One can also describe the decay in powers of some invariants, the highest power giving

a measure of spin. Indeed, with m2
BD = (pB + pD)2 we can write

dΓ(A → BDE)

dm2
BD

= P0 + P1 m2
BD + . . . + P2s (m2

BD)2s, (1.5)

obtained from eq. (1.4) through dm2
BD = 2EBEDβBβDd cos θBD by using a transformation

of variables. Note that we could have P2s = 0 and P2s−1 6= 0 for some kinematical or

dynamical reason, in this case we would set the lower limit on the spin to be s − 1
2 . We

note that the above method involves two decay products of particle A while it measures the

spin of the intermediate particle C and not the spin of the mother particle A. To directly

measure the spin of A, we need to use the polar angle of every decay products w.r.t. the

quantisation axis of A. The distribution w.r.t this decay angle looks identical to eq. (1.4)

with s being the spin of A.

1.2 Spin through the azimuthal angle

Another method of direct spin re-construction is to use the azimuthal angle distribution of

the decay product about the quantisation axis of the decaying particle A. This is the main

thrust of the present work. Using the form of the rotation matrices it can be shown, see

later, that the azimuthal distribution appearing from the interference of different helicity

states, has the general form

dΓ

dφ
= a0 +

2s
∑

j=1

aj cos(jφ) +

2s
∑

j=1

bj sin(jφ), (1.6)
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with aj being the CP even contributions while the bj being CP odd contributions. A

statistically significant non-zero value of a2s/a0 or b2s/a0 proves the particle spin to be s.

The coefficients, aj and bj, depend on the dynamics of production and decay processes and

we will see that they are proportional to the degree of quantum interference of different

helicity states of the particle A, or in other words, to the off-diagonal elements of production

and decay density matrices. This distribution (but for the CP odd part) has been proposed

in [24] and used in [25] to measure the spin of W and Z bosons at LEP-II and Tevatron,

respectively. It also has been used for the polarization studies in hyperon decay [33].

The azimuthal distribution in the laboratory frame is not simple sin or cos, however it is

sensitive to the polarisation of the decaying particle as shown in ref. [34]. In this paper,

we study the azimuthal distribution, eq. (1.6), in a model independent way to determine

the constants ajs and bjs in terms of the production and decay mechanism and construct

collider observables to possibly measure these constants. We construct the observables in

two different frames of reference and compare their merits.

This paper is organised as follows. In section 2 we give the angular distribution of the

decay products for a general process of production and decay with emphasis on the case of

spin–1
2 and spin–1 particles. We describe the azimuthal distribution in terms of observables

(asymmetries) to be used at colliders or event-generators in section 3. A numerical example

of a top quark decay chain is given in section 4 for the two different reference frames. We

conclude in section 5. Additional expressions are given in the appendices.

2 Density matrices, polarisation and azimuthal distributions

To assess the spin of an unstable particle A, we look at a general n-body production process

B1B2 → A A1 . . . An−1 followed by the decay of A as A → BC, for example. The other

particles Ai’s produced in association with A can be either stable or decay inclusively. The

differential rate for such a process is given by (see for example [34]),

dσ =
∑

λ,λ′

[

(2π)4

2I
ρ(λ, λ′)δ4

(

kB1
+ kB2

− pA −
( n−1
∑

i

pi

))

d3pA

2EA(2π)3

n−1
∏

i

d3pi

2Ei(2π)3

]

×
[

1

ΓA

(2π)4

2mA
Γ′(λ, λ′)δ4(pA − pB − pC)

d3pB

2EB(2π)3
d3pC

2EC(2π)3

]

(2.1)

after using the narrow-width approximation for the unstable particle A, thereby factoring

out the production part from the decay. Here we have I2 = [m2
B1B2

−(mB1
+mB2

)2][m2
B1B2

−
(mB1

− mB2
)2], m2

B1B2
= (kB1

+ kB2
)2, ΓA is the total decay width of A, mA is the mass

of A and ΓA << mA. The production and decay density matrices for A are denoted by

ρ(λ, λ′) and Γ′(λ, λ′), respectively. The terms in square brackets in eq. (2.1) are Lorentz

invariant combinations. The phase space integration can be performed in any frame of

reference without loss of generality.

Since we are interested in the decay distribution of A, we perform the phase space

integrations in the rest frame A. We integrate the first square bracket in eq. (2.1) and

– 6 –
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denote it as

σ(λ, λ′) =

∫

(2π)4

2I
ρ(λ, λ′)δ4

(

kB1
+ kB2

− pA −
(

n−1
∑

i

pi

))

d3pA

2EA(2π)3

n−1
∏

i

d3pi

2Ei(2π)3
.

(2.2)

We note that the total integrated production cross-section, without cuts, of the process

is given by the sum of diagonal terms σA = Tr σ(λ, λ′), while the off-diagonal terms of

σ(λ, λ′) denote the production rates for transverse/tensor polarisation states or, in other

words, for the quantum interference states. Further, we rewrite σ(λ, λ′) = σA PA(λ, λ′),

where PA(λ, λ′) is the polarisation density matrix for A in the corresponding production

process. Similarly, we can partially integrate the second term in eq. (2.1) and write it as
∫

1

ΓA

(2π)4

2mA
Γ′(λ, λ′)δ4(pA − pB − pC)

d3pB

2EB(2π)3
d3pC

2EC(2π)3

=
BBC(2s + 1)

4π
ΓA(λ, λ′)dΩB , (2.3)

where BBC is the branching ratio for the decay A → BC, s is spin of A, ΓA(λ, λ′) is

the decay density matrix normalised to unit trace, dΩB is the solid angle measure for the

decay product B.2 Combining eq. (2.2) and eq. (2.3) in eq. (2.1) we get the decay angular

distribution as
1

σ

dσ

dΩB
=

2s + 1

4π

∑

λ,λ′

PA(λ, λ′) ΓA(λ, λ′), (2.4)

where σ = σA BBC , the total cross-section for production of A followed by its decay into

BC state. The polarisation density matrix contains the dynamics of the production process

and we will discuss its form for spin–1
2 and spin–1 particle in the following sections.

First we will discuss the general structure of the decay density matrix which can be studied

independently of the production mechanism. The decay density matrix for a spin–s particle,

expressed in terms of helicity amplitudes eq. (1.1), is given by

Γ′s(λ, λ′) =
∑

l1,l2

M sλ
l1l2M

∗sλ′

l1l2

=

(

2s + 1

4π

)

ei(λ−λ′)φ
∑

l1,l2

ds
λl(θ)ds

λ′l(θ) |Ms
l1,l2|

2

= ei(λ−λ′)φ
∑

l

ds
λl(θ)ds

λ′l(θ)





∑

l1

(

2s + 1

4π

)

|Ms
l1,l1−l|2





= ei(λ−λ′)φ
∑

l

ds
λl(θ)ds

λ′l(θ) as
l , (2.5)

where

as
l =

(

2s + 1

4π

)

∑

l1

|Ms
l1,l1−l|2, |l1| ≤ s1, |l1 − l| ≤ s2, |l| ≤ s. (2.6)

2One can also consider 3-body or higher body decay of A in eq. (2.1) and write eq. (2.3) by integrating

all the phase space except ΩB . One example of this will be the top-quark decay [34].

– 7 –
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For a spin s particle there are 2s+1 different as
l ’s that define the decay density matrix with

Tr(Γ′s(λ, λ′)) =
∑

l

as
l .

Dividing the Γ′s by its trace leaves us with 2s independent quantities involving as
l ’s to

define the normalised decay density matrix of a spin–s particle. Now, the normalised

decay density matrix can be written as

ΓA(λ, λ′) = ei(λ−λ′)φ

∑

l d
s
λl(θ)ds

λ′l(θ)as
l

∑

l a
s
l

= ei(λ−λ′)φ γA(λ, λ′; θ), (2.7)

where γA(λ, λ′; θ) ≡ γA(λ, λ′) is the reduced normalised decay density matrix with only

θ dependence left. It is important to keep in mind that the φ dependence is an overall

phase and we see clearly that the differential cross section will have a more transparent

dependence on the azimuthal angle than the polar angle. Using the relation in eq. (2.7) we

can re-write eq. (2.4) as

1

σ

dσ

dΩB
=

2s + 1

4π

[

∑

λ

PA(λ, λ) γA(λ, λ)

+
∑

λ6=λ′

ℜ[PA(λ, λ′)] γA(λ, λ′) cos((λ − λ′)φ)

−
∑

λ6=λ′

ℑ[PA(λ, λ′)] γA(λ, λ′) sin((λ − λ′)φ)



 , (2.8)

which is similar to eq. (1.6) after integrating out cos θ. Thus we have a simple looking

φ distribution of the decay product and also the coefficients of the different harmonics in

the distribution. We emphasise again that the φ dependence enters only through terms

with λ 6= λ′, in other words the off-diagonal elements of the production and decay density

matrices. When integrating over the full space without any cuts, the information contained

in these terms will be lost. Another point to stress is that the form of the distribution

eq. (2.8) remains same in any other frame as long as φ is measured around the momentum

axis of the particle with some suitable reference for φ = 0. The measurement of the cos nφ

(with n ≤ 2s) modulation that stems from the part describing the decay depends on the

size of the corresponding factor PAγA which is controlled by the interactions of particle

A. The factors PA describe the different polarisations with which the particle is produced

and the factor γA depends on the dynamics controlling the decay. One of the aims of this

paper is to analyse how one can use this understanding to maximise these modulations

and especially the modulation with cos 2sφ which is the most unambiguous measure of the

spin-s of the decaying particle. For illustration and as a guide, in the following, we take a

close look at the production and decay density matrices for spin–1
2 and spin–1 particles to

identify the conditions on the production and decay dynamics for the spin to be measured.

– 8 –
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2.1 Spin–1
2 particle

For the decay of spin–1
2 particle, |12 , l〉 → |s1, l1〉 + |s2, l2〉, the normalised decay density

matrix, in the rest frame or rather the helicity rest frame [35], can be written as

Γ 1

2

(λ, λ′) =







1+α cos θ
2

α sin θ
2 eiφ

α sin θ
2 e−iφ 1−α cos θ

2






, (2.9)

using eq. (2.5). Here α = (a
1/2
1/2 − a

1/2
−1/2)/(a

1/2
1/2 + a

1/2
−1/2) and aj

l are defined in terms of

reduced matrix elements in eq. (2.6) and for spin–1
2 particles given as

a
1/2
1/2 =

(

1

2π

)

∑

l1

|M1/2
l1,l1−1/2|

2 |l1| ≤ s1, |l1 − 1/2| ≤ s2

a
1/2
−1/2 =

(

1

2π

)

∑

l1

|M1/2
l1,l1+1/2|

2 |l1| ≤ s1, |l1 + 1/2| ≤ s2. (2.10)

The explicit calculation of α for the spin–1
2 particle decaying into two body final state is

given in the appendices C.1 and C.2 for decays into a lighter spin–1/2 and either a scalar

or spin–1. We have restricted ourselves to operators of dimension 4. It can be seen that α

is zero for a pure vector or pure axial-vector coupling in the case of decay to a spin-1. It

can also be small depending on the masses of the daughter particles.

The polarisation density matrix for a spin–1
2 particle can be parameterised as

P 1

2

(λ, λ′) =
1

2







1 + η3 η1 − iη2

η1 + iη2 1 − η3






, (2.11)

where η1 is the transverse polarisation of A in the production plane, η2 is the transverse

polarisation of A normal to the production plane and η3 is the average helicity or polari-

sation along the momentum of A or polarisation along the quantisation axis. Combining

the expression of Γ 1

2

(λ, λ′) and P 1

2

(λ, λ′) in eq. (2.8) we get the angular distribution of a

spin–1
2 particle as [34]

1

σ1

dσ1

dΩB
=

1

4π
[1 + αη3 cos θ + αη1 sin θ cos φ + αη2 sin θ sin φ] . (2.12)

The cos θ averaged azimuthal distribution is given by

1

σ1

dσ1

dφ
=

1

2π

[

1 +
αη1π

4
cos φ +

αη2π

4
sinφ

]

. (2.13)

Here we note that the cos φ or the sin φ modulation of the azimuthal distribution is propor-

tional to the transverse polarisation of the spin–1
2 particles and also to the analysing power

α. Thus, it is important that the production process yields a non-zero value of either η1 or

η2. A non-zero η2 indicates CP -violation or the presence final state interaction (absorptive

parts). A non-zero η1 can be obtained either with parity violation, which is present in the
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electro-weak sector of the SM or with appropriate initial beam polarisation. Further, we

also need to know the analysing power α of the particle. For spin–1
2 particle, it is given

in eqs. (C.4) and (C.6). We see that the decay vertex has to be at least partially chiral,

i.e. parity violating for α 6= 0. That is, we need effectively chiral production and at least

partially chiral decay for the fermions for their spin to be measured.

It is educative to realise that eq. (2.12) can be cast into

1

σ1

dσ1

dΩB
=

1

4π

[

1 + α
~pB

|~pB |
.~η

]

. with ~η = (η1, η2, η3) (2.14)

with ~η the polarisation vector. Performing a general rotation will leave ~pB.~η unchanged.

In the new frame, after rotation, we can define a new averaged azimuthal distribution as

1

σ1

dσ1

dφ′ =
1

2π

[

1 +
αη′1π

4
cos φ′ +

αη′2π

4
sinφ′

]

. (2.15)

If the rotation is done along the η2 direction (normal to the production plane), then η′2 = η2

but η′1 will pick up a contribution from η3, the average helicity. If η3 ≫ η1 the azimuthal

distribution in this new frame is more conducive to a spin measurement, in the sense of

catching the cos φ dependence.

It is important to observe that the picture we have described so far in terms of az-

imuthal dependence through cos φ and sin φ (or higher for higher spins) may be very much

impacted if cuts are applied to the cross section. If the cuts are φ-dependent, the azimuthal

distributions may no longer have the simple form of eq. (2.13) but would carry “spurious”

dependence that would prevent the spin reconstruction as advocated here. Indeed, we

could have a much more complicated dependence of the form

1

σ1

dσ1

dφ
=

1

2π

[

Fc(φ) +
αη1π

4
Gc(φ) cos φ + Hc(φ)

αη2π

4
sin φ

]

. (2.16)

unless only φ independent cuts are applied as suggested in ref. [26].

2.2 Spin–1 particle

For the decay of spin–1 particle, |1, l〉 → |s1, l1〉 + |s2, l2〉, the normalised decay density

matrix is given by

Γ1(l, l
′) =













1+δ+(1−3δ) cos2 θ+2α cos θ
4

sin θ(α+(1−3δ) cos θ)

2
√

2
eiφ (1 − 3δ) (1−cos2 θ)

4 ei2φ

sin θ(α+(1−3δ) cos θ)

2
√

2
e−iφ δ + (1 − 3δ) sin2 θ

2
sin θ(α−(1−3δ) cos θ)

2
√

2
eiφ

(1 − 3δ) (1−cos2 θ)
4 e−i2φ sin θ(α−(1−3δ) cos θ)

2
√

2
e−iφ 1+δ+(1−3δ) cos2 θ−2α cos θ

4













,

(2.17)

where,

α =
a1

1 − a1
−1

a1
1 + a1

0 + a1
−1

, δ =
a1

0

a1
1 + a1

0 + a1
−1

(2.18)

and

a1
1 =

(

3

4π

)

∑

l1

|M1
l1,l1−1|2 |l1| ≤ s1, |l1 − 1| ≤ s2
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a1
0 =

(

3

4π

)

∑

l1

|M1
l1,l1|

2 |l1| ≤ min(s1, s2)

a1
−1 =

(

3

4π

)

∑

l1

|M1
l1,l1+1|2 |l1| ≤ s1, |l1 + 1| ≤ s2 (2.19)

The explicit calculation of the analysing power parameter α (the vector part) and δ (the

rank–2 tensor) for a spin–1 particle decaying in a two-body final state is given in the

appendices C.3, C.4 and C.5. In particular δ = 0 for decays into massless fermions assuming

dimension–4 operators. For the decay W → f̄ f ′ in the SM we have α = −1 for massless f

and f ′.

The polarisation density matrix of a spin–1 particle has two parts: the vector polari-

sation which we define here as ~p = (px, py, pz) and is identical to that for a spin–1
2 ~η and

the tensor polarisation described through a symmetric traceless rank–2 tensor Tij , Tr T=0.

The density matrix is parameterised as [35]

P1(λ, λ′) =













1
3 + pz

2 + Tzz√
6

px−ipy

2
√

2
+

Txz−iTyz√
3

Txx−Tyy−2iTxy√
6

px+ipy

2
√

2
+

Txz+iTyz√
3

1
3 − 2Tzz√

6

px−ipy

2
√

2
− Txz−iTyz√

3

Txx−Tyy+2iTxy√
6

px+ipy

2
√

2
− Txz+iTyz√

3
1
3 − pz

2 + Tzz√
6













, (2.20)

Again using eq. (2.8) we can write the angular distribution for a spin–1 particle as

1

σ2

dσ2

dΩB
=

3

8π

[

(

2

3
− (1 − 3δ)

Tzz√
6

)

+ α pz cos θ +

√

3

2
(1 − 3δ) Tzz cos2 θ

+

(

α px + 2

√

2

3
(1 − 3δ) Txz cos θ

)

sin θ cos φ

+

(

α py + 2

√

2

3
(1 − 3δ) Tyz cos θ

)

sin θ sin φ

+(1 − 3δ)

(

Txx − Tyy√
6

)

sin2 θ cos(2φ)

+

√

2

3
(1 − 3δ) Txy sin2 θ sin(2φ)

]

. (2.21)

The cos θ averaged distribution is

1

σ2

dσ2

dφ
=

3

4π

[

2

3
+

αpxπ

4
cos φ +

αpyπ

4
sinφ +

2

3
(1 − 3δ)

(

Txx − Tyy√
6

)

cos(2φ)

+
2

3
(1 − 3δ)

(

√

2

3
Txy

)

sin(2φ)

]

. (2.22)

We note that the φ and 2φ modulation of the azimuthal distribution is proportional to the

transverse polarisations, px and py, and the transverse components of the tensor polarisa-

tions, Txx − Tyy and Txy. Again, in this frame all the cos modulations are CP -even and
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the sin modulations are CP -odd. To determine the spin we need Txx − Tyy 6= 0 from the

production part and δ 6= 1/3 from the decay part in the CP -even production process. Since

there is no symmetry that sets δ to be one-third, the dynamics in the decay part is not

constrained. In other words, the decay mechanism does not require any parity violation.

As we have done for spin–1/2 it is instructive to rewrite eq. (2.21) in terms of invariants

under rotations. If one defines a rank–2 tensor out of the tensor product of the unit vector

describing the momentum of the decay product B, PB = ~pB ⊗ ~pB/|~pB |2,3 using the fact

that T is traceless eq. (2.21) writes in terms of (rotation) invariants as

1

σ2

dσ2

dΩB
=

1

4π

[

1 + α
3

2

~pB

|~pB |
.~p + (1 − 3δ)

√

3

2
T.PB

]

. (2.23)

We can then rewrite eq. (2.23) in another frame, in particular one where we make a rotation

around the y axis, transverse to the production plane. This will not mix the CP-odd and

CP-even tensors but may make some φ asymmetries in the new frame larger.

2.3 spin–3
2 and spin–2

For spin–3
2 and spin–2 particles we give the decay density matrix in appendix B. Since we

need the coefficient of the highest harmonics to be non-zero for the spin to be determined,

we note that for spin–3
2 we need parity violating interaction in the decay process, i.e.,

α1 6= 0 and/or α2 6= 0 whose combination defines the analysing power of highest rank. For

spin–2 particles we need A4 ∝ (a2
2 − 4a2

1 + 6a2
0 − 4a2

−1 + a2
−2) 6= 0. A4 is the analysing

power of rank–4, the highest rank for spin–2 to be non-vanishing (see eq. (B.5)). This can

be achieved without parity violating interactions in the decay process. We note that parity

violating interactions are required in the decay of fermions for its spin to be measured along

with its (transverse) polarisation being non-zero . For the bosons, on the other hand, we

only need its transverse polarisation being non-zero either due to parity violation in the

production process or due to polarisation of the initial beams.

3 The azimuthal distribution at event-generators/colliders

The azimuthal distributions eqs. (2.13), (2.22) etc. are given in the rest frame of the

decaying particle. To be able to measure the spin we need to construct the above mentioned

azimuthal angle in terms of quantities defined in the lab frame of a collider experiment.

Before considering other frames let us first define some asymmetries in the rest frame.

3.1 Asymmetries in the rest frame

We start with re-writing the rest frame azimuthal distribution in terms of some simple

asymmetries that we define below. Let us first define

I2s(φ1, φ2) =

φ2
∫

φ1

dφ
dσ2s

dφ
(3.1)

3(~pB ⊗ ~pB)ij = pB i pB j . The scalar product is TPB =
P

ij
TijPB ij = Tr TPB.

– 12 –



J
H
E
P
0
7
(
2
0
0
9
)
0
2
8

For s = 1/2 we define the following asymmetries and calculate them using eq. (2.13):

A1
1 =

I1(−π/2, π/2) − I1(π/2, 3π/2)

I1(0, 2π)
=

αη1

2

B1
1 =

I1(0, π) − I1(π, 2π)

I1(0, 2π)
=

αη2

2
. (3.2)

These asymmetries have been used in ref. [34] as a probe of the polarisation of the top-

quark. The eq. (2.13) can be re-written in terms of these asymmetries as

1

σ1

dσ1

dφ
=

1

2π

[

1 +
πA1

1

2
cos φ +

πB1
1

2
sin φ

]

. (3.3)

Similarly for s = 1 we further define similar asymmetries and calculate them in terms of

vector and tensor polarisations as follows,

A1
2 =

I2(−π/2, π/2) − I2(π/2, 3π/2)

I1(0, 2π)
=

3αpx

4

B1
2 =

I2(0, π) − I2(π, 2π)

I2(0, 2π)
=

3αpy

4

A2
2 =

I2(−π/4, π/4) − I2(π/4, 3π/4) + I2(3π/4, 5π/4) − I2(5π/4, 7π/4)

I2(0, 2π)

=
2

π
(1 − 3δ)

(

Txx − Tyy√
6

)

B2
2 =

I2(0, π/2) − I2(π/2, π) + I2(π, 3π/2) − I2(3π/2, 2π)

I2(0, 2π)

=
2

π
(1 − 3δ)

(

√

2

3
Txy

)

. (3.4)

Thus eq. (2.22) can be re-written as

1

σ2

dσ2

dφ
=

1

2π

[

1 +
πA1

2

2
cos φ +

πB1
2

2
sin φ +

πA2
2

2
cos(2φ) +

πB2
2

2
sin(2φ)

]

. (3.5)

We see that the φ distribution in the rest frame of the decaying particle has very simple

form in terms of the above mentioned asymmetries. It is clear that for higher spins we

need to cut the 2π in more and more parts. The important observation to make is that

the coefficient of the cos φ, A1
1 for spin–1/2 and A2

1 for spin–1 are determined exactly in

the same way in terms of the asymmetries, this generalises also to the higher spin particles

and similarly for other coefficients of cos jφ.

Next we write the asymmetries in terms of spin-momentum correlators. To this effect,

we first define the following spin vectors in the helicity rest frame

sx = (0, 1, 0, 0), sy = (0, 0, 1, 0), sz = (0, 0, 0, 1) (3.6)

which are orthogonal to the 4-momenta of the particle A, pA = (mA, 0, 0, 0). These spin

vectors satisfy the conditions pA.si = 0 and si.sj = −δij . The asymmetries for the spin–1
2

case can then be written as

A1
1 =

σ(sx.pB < 0) − σ(sx.pB > 0)

σ(sx.pB < 0) + σ(sx.pB > 0)
, B1

1 =
σ(sy.pB < 0) − σ(sy.pB > 0)

σ(sy.pB < 0) + σ(sy.pB > 0)
. (3.7)
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Modulations Asymmetries Spin-momentum correlators Cj

cos(φ) A1 sx.pB

sin(φ) B1 sy.pB

cos(2φ) A2 (sx.pB)2 − (sy.pB)2

sin(2φ) B2 (sx.pB)(sy.pB)

cos(3φ) A3 (sx.pB)3 − 3(sx.pB)(sy.pB)2

sin(3φ) B3 3(sx.pB)2(sy.pB) − (sy.pB)3

cos(4φ) A4 (sx.pB)4 − 6(sx.pB)2(sy.pB)2 + (sy.pB)4

sin(4φ) B4 (sx.pB)3(sy.pB) − (sx.pB)(sy.pB)3

Table 1. The table of asymmetries Aj and Bj corresponding to the jφ modulation of the azimuthal

distribution and corresponding spin-momentum correlators Cj . Here sx,y are the transverse spin

directions of the decaying particle A, with sx being in the production plane and pB is the 4-

momentum of the decay product B. The spin vectors sx,y are listed in table 2 in different frames.

For frame F we replace si with ŝi in the above correlators.

The asymmetries for the spin–1 case can be written as

A1
2 =

σ(sx.pB < 0) − σ(sx.pB > 0)

σ(sx.pB < 0) + σ(sx.pB > 0)
, B1

2 =
σ(sy.pB < 0) − σ(sy.pB > 0)

σ(sy.pB < 0) + σ(sy.pB > 0)
,

A2
2 =

σ([sx.pB ]2 − [sy.pB ]2 > 0) − σ([sx.pB ]2 − [sy.pB]2 < 0)

σ([sx.pB ]2 − [sy.pB ]2 > 0) + σ([sx.pB ]2 − [sy.pB]2 < 0)
,

B2
2 =

σ([sx.pB ][sy.pB] > 0) − σ([sx.pB ][sy.pB ] < 0)

σ([sx.pB ][sy.pB] > 0) + σ([sx.pB ][sy.pB ] < 0)
. (3.8)

It is clear from eqs. (3.7) and (3.8) that the asymmetry corresponding to a given modu-

lation of φ has identical expressions in terms of the spin-momentum correlator sx.pB and

sy.pB. What we mean is that by constructing specific functions with products of si.pB one

reconstructs the set of cos mφ, sin mφ, see table 1. Thus in a spin independent way we can

write these asymmetries as

Aj or Bj = (−1)j
σ(Cj > 0) − σ(Cj < 0)

σ(Cj > 0) + σ(Cj < 0)
, (3.9)

where the correlators Cjs are listed in table 1 for different modulations. Further we note that

these expressions of asymmetries have a simple interpretation in terms of the polarisation

parameters as long as ~sz, 3-vector, is parallel to the 3-momentum of the decaying particle in

the frame of choice and ~si are orthogonal to each other. This defines a helicity frame. The

lab frame, achieved by a boost along z-axis and then rotation around y-axis, also satisfies

the properties of being a helicity frame. We note that the orthogonality of ~si is respected

only if the boost is along one of ~si directions. In some other frame where these properties

are not valid one needs to re-write these sis as linear combinations of orthogonal si as we
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Figure 2. The momentum configuration in the laboratory frame L of the colliding beams is

depicted. The angle between the production plane (the xz-plane) and the decay plane (spanned by

pB and pC) is the azimuthal angle φM (= φM
B ), which is the ordinary azimuthal angle in the frame

M . This azimuthal angle has been studied in [24] and [25].

will see in the following sections. This will be necessary if the new frame is not reached

through a boost made along the direction of motion of the particle.

3.2 The rotated frame M

The rotated frame is in fact the frame that is obtained from the rest frame by performing

a pure Lorentz boost along the quantisation axis, the amount of boost is such that the

energy of the particle whose spin we want to study is the same as the one measured in the

laboratory frame. This is therefore a helicity frame in the sense that the quantisation axis

has now been identified to lie along the momentum of the particle. The normalised 3-spin

vectors ~si remain unchanged and therefore also the polarisation vectors (~η, ~p) and other

tensor polarisations. Hence the azimuthal asymmetries are the same as in the rest frame

and have a one-to-one correspondance to the polarisation tensors defined in the rest frame.

The appellation rotated frame comes from how this frame is pictured in the laboratory

frame. In fact this can be viewed as a simple rotation. In the laboratory frame L, defined

in table 2, the production plane of the particle A defines the xz-plane and the plane

containing the decay products with momenta pB and pC defines the decay plane. These

two planes intersect along the momentum pA of the decaying particle, see figure 2. Thus

the angle between these two planes is the azimuthal angle of the decay product around the

axis of spin quantisation (the momentum pA), i.e. the φ we have mentioned in eqs. (2.13)

and (2.22) and which corresponds to exactly the azimuthal angle defined in the rest frame.

In terms of the variables defined in the laboratory frame L, it is defined as [24, 25]

φ = cos−1

(

(ẑ × ~pL
A).(~pL

C × ~pL
B)

|ẑ × ~pL
A| |~pL

C × ~pL
B|

)

= φM
B , (3.10)

where, φM
B = tan−1 sM

y .pM
B

sM
x .pM

B

= tan−1 sL
y .pL

B

sL
x .pL

B

. (3.11)
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From eq. (3.10) it appears that the reconstruction of this angle in the laboratory requires

that one measures the momenta of all the decay products. This may be achieved even if C,

say, is invisible provided one has enough control and constraints on the initial state so that

the momentum of the decaying particle A is known, like for instance in e+e− annihilation

where the beam energy is fixed.

Another way to get the azimuthal angle φM is to re-construct the scattering angle θL
A in

the lab frame and rotate the event about the y-axis by that angle to bring the momentum

pA in the direction of the z-axis. The azimuthal angle of the decay product, φM
B is same

as φ mentioned above in the lab frame. We dub this frame the rotated frame M (obtained

by rotating the laboratory frame) and the momenta in this frame as compared to that in

the laboratory frame is given in the table 2. Using the form of the momenta pB and si in

frames R(rest frame) and M , one can see that φ = φR
B = φM

B . Thus the distribution in

angle φ, defined in eq. (3.10), is the same azimuthal distribution as in the rest frame with

same amplitudes for the different harmonics.

This azimuthal angle has first been studied in ref. [24] to demonstrate the simple

cos(jφ) modulations of the azimuthal distributions and has been used to examine the spin

of Z and W bosons at Tevatron and LEP-II, respectively, in ref. [25]. Here we provide a

theoretical understanding of the amplitude of these cos(jφ) modulations in terms of trans-

verse polarisations of the particle under consideration and its analysing power α etc. . .

In the event when the transverse polarisation is negligibly small or zero, this frame will

not give any modulation in the azimuthal distribution as shown in section 4 for top pair

production in e+e−. To address this potential issue we construct another frame which will

give us an independent estimate on the modulations of the φ distribution and hence the

spin of the particle. A hint on how to achieve this has been illustrated in section 2.1 and

section 2.2 for the spin–1/2 and spin–1 when a simple rotation mixed the longitudinal po-

larisation and the transverse polarisation in the production plane, leaving the polarisation

transverse to the production plane unchanged. The next section will show how this can be

achieved in general and how we can construct the spin-momentum correlators in this case.

3.3 The boosted frame F

The idea behind the boosted frame F is to induce a non zero azimuthal asymmetry even

in the event that transverse tensor polarisations are very small or vanishing by making the

longitudinal components, assuming it is non zero, contribute. We will show how this can

be achieved especially how we can construct the correlators from combinations of variables

measured in the laboratory frame. It should be added that both the rest frame and the M

frame are helicity frames. In the new frame and in order to arrive at the mixing between the

longitudinal and the transverse polarisations we need to perform a transformation that will

move the longitudinal spin (quantisation axis) away from the momentum of the particle.

Yet, we still need to reconstruct a helicity basis in order to construct the helicity density

matrix. To achieve the misalignment, we observe that a Lorentz boost in a direction other

than the direction of the particle momentum will mix the helicity states. In our case one

way to achieve this is to carry a boost from the laboratory frame along the negative x-axis
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Rest frame:= R Lab frame:= L

sR
x = (0, 1, 0, 0)

sR
y = (0, 0, 1, 0)

sR
z = (0, 0, 0, 1)

pR
A = (mA, 0, 0, 0)

sL
x = (0, cos θL

A, 0,− sin θL
A)

sL
y = (0, 0, 1, 0)

sL
z = (βL

A, sin θL
A, 0, cos θL

A)γL
A

pL
A = EL

A(1, βL
A sin θL

A, 0, βL
A cos θL

A)

pR
B = ER

B

















1

βR
B sin θR

B cos φR
B

βR
B sin θR

B sin φR
B

βR
B cos θR

B

















pL
B = EL

B

















1

βL
B sin θL

B cos φL
B

βL
B sin θL

B sinφL
B

βL
B cos θL

B

















Rotated frame:= M Boosted frame:= F

sM
x = (0, 1, 0, 0)

sM
y = (0, 0, 1, 0)

sM
z = (βL

A, 0, 0, 1)γL
A

ŝF
x = (0, 1, 0, 0)

ŝF
y = (0, 0, 1, 0)

ŝF
z = (βF

A , 0, 0, 1)γF
A



















not the result of
boost L → F ,
see text.

pM
A = EL

A(1, 0, 0, βL
A) pF

A = EF
A (1, 0, 0, βF

A )

pM
B = EL

B

















1

βL
B sin θM

B cos φM
B

βL
B sin θM

B sin φM
B

βL
B cos θM

B

















pF
B = EF

B

















1

βF
B sin θF

B cos φF
B

βF
B sin θF

B sin φF
B

βF
B cos θF

B

















Table 2. Momentum pA, pB and the spin directions si in various frames. The transformation

R → M is a boost along z-axis Λz(β
L
A), M → L is a rotation R(θL

A) and pF
A & pF

B are obtained by

a boost along x-axis Λx(−βL
A sin θL

A) from frame L. Note that the spin vectors ŝF
i in frame F are

not related to sL
i through boost but constructed such that they represent the helicity basis. The

expressions for sF
i = Λx(−βL

A sin θL
A)sL

i which are the result of the boost are given in eq. (3.12).

The azimuthal angle of interest is φ = tan−1(sy.pB/sx.pB) in each frame (with si replaced by ŝi in

frame F ).

with velocity βL
A sin θL

A, thus reaching the boosted frame F . The momentum pF
A of A is then

pointing along the z-axis, see table 2. This looks as if we have slowed down the particle,

however contrary to frame M where the momentum is also pointing in the z direction, we

can check that none of the transformed spin vectors sF
i = Λx(−βL

A sin θL
A) sL

i has its three

momentum lying on the momentum of the particle. In fact, it can be shown on general

ground that if initially the spin axis is parallel to the particle momentum, in the new frame

these two axes will move away by an angle ω, the Wick angle [35], if the boost is not

performed along the particle momentum. Indeed we verify that

sF
x = Λx

(

−βL
A sin θL

A

)

sL
x = cos ω ŝF

x − sin ω ŝF
z
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o

x’

z’

y

φFp
B

p
A

p
C

Figure 3. The momentum configuration in the transversely boosted frame F is depicted. The

azimuthal angle of pB is the azimuthal angle φF (= φF
B). This frame is obtained from frame L by

boosting along negative x-axis such that the transverse momentum p⊥A becomes zero.

sF
y = ŝF

y = sL
y

sF
z = Λx

(

−βL
A sin θL

A

)

sL
z = sin ω ŝF

x + cos ω ŝF
z with

cos ω =
cos θL

A
√

1 −
(

βL
A sin θL

A

)2
, sin ω =

sin θL
A

γL
A

√

1 −
(

βL
A sin θL

A

)2
(3.12)

ŝF
x,y,z are the helicity basis in the new frame F and are given explicitly in table 2. Since the

spin vectors sL
x,z in the laboratory frame are not parallel to the x-axis (except for sin θL

A = 0

or 1), a boost along the x-axis modifies the orthogonality of the spatial component of si

in the boosted frame. Also the spatial components of the boosted sz, i.e. Λ(−βL
A sin θL

A)sL
z ,

is not parallel to the spatial component of pF
A, owing to the Wick rotation of the spin

basis. Thus the definition of the longitudinal or transverse polarisations in the frame F ,

which is not a helicity frame, is different from that in the helicity lab frame L. Since the

asymmetries Aj and Bj in the frame F are defined with respect to ŝF
i , we can in principle

have Aj non-zero even in the absence of any transverse polarisation in frame L. The helicity

basis ŝF
x,y,z is to be used to construct the spin-momentum correlators in frame F .

This rotation of the spin basis vectors leads to the transformation of the density matrix

and the various polarisation parameters. In general, for a rotation defined through the,

Euler, angle θ̃, φ̃ the density matrix transforms as [35]

ρ′ = D(φ̃, θ̃,−φ̃) ρM D†(φ̃, θ̃,−φ̃) .

In our case we have θ̃ = ω and φ̃ = 0(boost in the x direction), which leads to

ρF (λ, λ′) = ds
λl(ω) ds

λ′l′(θω) ρL(l, l′) . (3.13)

Thus the density matrix ρF does not receive any additional phase and the azimuthal

sin(nφF
B) dependence remains unaltered. The polarisation parameters, for the spin–1 for

example as concerns the vector and the tensor polarization, transform as [35]

pF
i = Rij(ω) pL

j , TF
i,j = Rik(ω) Rjk(ω) TL

kl (3.14)
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as mentioned earlier in section 2.1 and 2.2. Here, i, j, k, l = {x, y, z}, Rij is the matrix,

which for the boost we have performed, corresponds to a rotation about the y-axis in the

cartesian coordinate. The superscript F or L stands for the quantities defined in frame F

or frame L respectively. The asymmetries Aj and Bj in frame F have exactly the same

expression as eqs. (3.2) and (3.4) with pi and Tij replaced by the ones defined in eq. (3.14).

Thus for a spin-1 particle we have A1 ∝ pF
x = Rxj(ω)pL

j and not simply related to the

transverse polarisation pL
x as we have in the (helicity) frames M or L. This shows again

that one can have a non-zero A1 even in the absence of transverse polarisation in the frames

M or L.

The azimuthal angle in this boosted frame is denoted by φF
B and shown in figure 3. Since

φF
B is the azimuthal angle around the new momentum pF

A, it will have a simple cos(jφ) and

sin(jφ) modulations in the distribution up to j = 2s. The asymmetries Aj and Bj in this

frame are defined w.r.t. the spin directions ŝF
i given in the table 2. φF

B is expressed as

cot φF
B =

ŝF
x .pF

B

ŝF
y .pF

B

=
cos ω sL

x .pL
B + sinω sL

z .pL
B

sL
y .pL

B

(3.15)

= cos ω cot φM
B + sin ω

sL
z .pL

B

sL
y .pL

B

. (3.16)

We see that φF
B is related to φM

B in a non-trivial way and thus the corresponding modulation

need not have vanishing amplitudes even when this is the case in terms of φM
B distribution.

Note that the asymmetries can be zero in both frames if either we have PA(λ, λ′) ∝ δλ,λ′ ,

i.e. when the particle is completely unpolarised, or when the particle is spin–0. In all other

cases, the two frames will lead to different values of the azimuthal asymmetries. Thus, we

need to use both frames to confirm the spin of the particle.

3.4 Note on event reconstruction

The asymmetries Aj and Bj and the azimuthal angles φM and φF require complete re-

construction of the test particle’s momentum in order to construct the corresponding spin

vectors sL
i and/or ŝ

L/F
i . The possibility of reconstruction depends both on the kind of

collider and the number of missing particles in the process. For example, reconstruction

of spin vectors is possible at colliders with fixed center of mass energy, like the ILC, for

some selected processes where the number of missing particles is 2 or less. At hadronic

colliders, having variable centre of mass energy at partonic level, such reconstructions can

be achieved for processes with one or no missing particles. Most of the new physics models

with a dark matter candidate have two missing particles in the production process of new

particles at LHC. This makes the desired re-construction as outlined here unfortunately

impossible at LHC in such processes. It is worth further investigating how this method

could be combined with other methods or improved. To illustrate the method we therefore

turn to an application for a collider such as the ILC.
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4 Application to e+e−

→ tt̄ → bW + b̄W −

→ bl+ν b̄jj

In this section we study top-quark pair production in e+e− in the semi-leptonic channel

as a test bed for the spin measurement based on the exploitation of the azimuthal asym-

metries in different frames outlined previously. We chose this particular process because

it represents a decay chain where the intermediate W boson is on-shell. The charged lep-

ton, l+ = e+, µ+, in the leptonic decay of the top (and the W+) will play the role of our

particle B in the previous section and used to construct the spin-momentum correlators.

In this example all the momenta can be reconstructed and therefore the methods we have

outlined can be applied readily. We do not take beamsstrahlung into account nor do we

consider the issue of backgrounds that might force us to introduce cuts, which we want

to avoid. However, we consider the effect of beam polarisation. The polarisations of the

initial electron and positron beams can be used to tune the polarisation of the produced

heavy particles that can drastically affect the polarisation. We work at
√

s = 500GeV

where the total cross section, including branching ratios, is 81fb for unpolarised e+, e−,

This corresponds to a total number of 40500 events with a typical luminosity of 500 fb−1.

For each fit we make, we will indicate what the minimum number of events is required

for a 3σ discovery of a particular cos jφ modulation that is a measure of the spin of the

particle, we will see that this programme could be successfully carried at a linear collider

with 500 fb−1 for this process.

For event generation we use the partonic level event generator Pandora-2.3 [36] and

generate 2 106 events for different initial state polarisations. Event by event we need to

calculate sM
x .pM

B , sM
y .pM

B (frame M) and ŝF
x .pF

B , ŝF
y .pF

B (frame F ) which can be expressed

in terms of energies and angles measured in the lab frame,

sM
x .pM

B = sL
x .pL

B = −EL
B

(

cos θL
A sin θL

B cos φL
B − sin θL

A cos θL
B

)

ŝF
x .pF

B =
EL

B

(

βL
A sin θL

A − sin θL
B cos φL

B

)

√

1 −
(

βL
A sin θL

A

)2

sM
y .pM

B = ŝF
y .pF

B = sL
y .pL

B = −EL
B sin θL

B sinφL
B . (4.1)

We then calculate, for A = t,W all the 8 asymmetries corresponding to the correlators

in table 1, therefore testing whether a value for the top spin as high as s = 2 is possi-

ble. The azimuthal angles in frames M and F can be constructed using eq. (4.1) along

with eqs. (3.11) and (3.15) for generating the distributions. The reconstructed azimuthal

distributions are then fitted with a general function

Fn(φ) = a0 +

n
∑

j=1

[aj cos(jφ) + bj sin(jφ)] (4.2)

with n = 4. With n = 4, the only bias is that the particle has spin s ≤ 2. We then

compare the best fit coefficients with the asymmetries calculated. Since we work with the

SM production and decay mechanisms for the t-quark, there is no CP violation in this

process. The fitting procedure returns bj ≈ 0 and Bj ≈ 0 in both frames M and F for all
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(Pe− , Pe+) Quantities Frame M Frame F Reference

(+0.00,+0.00)
A1 +0.111 −0.035

—
a1/a0 +0.175 −0.055

(+0.80,−0.60)
A1 −0.253 +0.149

figure 4
a1/a0 −0.397 +0.234

(+0.792,+0.60)
A1 ≈ 0 +0.021

figure 5
a1/a0 ≈ 0 +0.033

Table 3. Values for the fitted asymmetry A1 and the fit parameter a1/a0, see eq. (4.2), for the

lepton distribution from t-decay for different initial state polarisations Pe− , Pe+ for the electron

and the positron in frames M and F . We have the relation a1/a0 = πA1/2 which is observed

numerically within tolerance (±10−3). The other aj/a0, j 6= 1 are zero within the tolerance. Recall

that we generate 2 106 events.

the initial state polarisations. This constitutes therefore a consistency check and confirms

the absence of CP violation. In the following sections we will only talk about the CP

even contributions coming from various cos(jφ) modulations and ignore the discussion on

sin(jφ) modulations as they are zero.

4.1 Spin–1
2 case: t-quark

Top pair production at an e+e− collider proceeds through a photon and a Z-boson exchange

in the s-channel. We will study the effect of the initial polarisation of the electron Pe− and

positron Pe+ . The partial chiral nature of the Z coupling leads to a finite top polarisation

even for unpolarised initial state electron and positron beams. For t-quark decaying into a

lepton through a W , the analysing power of the top is α = 1.

We start our analysis with unpolarised beams and the polarisation of top for this case

is given as (Pe∓ is the polarisation of e∓):

(Pe− , Pe+) = (0.00, 0.00) : η1 = +0.222, η2 = 0.000, η3 = −0.127 .

This corresponds to the asymmetry A1 = η1/2 = 0.111 and the amplitude of cos φ to

be πA1/2 = 0.175. This is confirmed by the fit in frame M, see table 3. We would need4

NM ≈ 730 events to measure it with 3σ significance in frame M . In frame F the asymmetry

in this case is A1 = −0.035 and requires NF ≈ 7350 events for it to be measured with 3σ

significance. Thus, one needs at least max(NM , NF ) = 7350 events to confirm the spin of

t-quark to be at least 1
2 with unpolarised beams. In this case where the beams are not

polarised, the asymmetries are smaller in frame F , however the analysis in this frame does

confirm that no new modulation has been missed, and thus reconfirms the spin–1/2 nature

of the top.

4 Number of events required: N = f2/(Aj)2, where f is the degree of statistical significance. Numbers

with f = 3, for 3σ significance, are quoted.
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2π
/σ

 d
σ/

dφ
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 1.2

 1.4

 1.6
Frame: M(Pe-, Pe+) = (+0.80, -0.60)

Figure 4. The azimuthal distribution of lepton from decay of t-quark is plotted for (Pe− , Pe+) =

(+0.80,−0.60) in frame M (top) and in frame F (below) using 2 × 106 events at partonic level

(histogram). The best fit (green/grey line) to F4(φ) leads to the coefficient of the cosφ modulation

to be non-zero (given in table 3) and all other modulations are absent in both the frames indicating

the spin of t-quark to be 1

2
.

In order to improve the sensitivity, one might consider the case of polarised e+e−

beams to produce top quarks with larger polarisation. For example,

(Pe− , Pe+) = (+0.80,−0.60) : η1 = −0.505, η2 = 0.000, η3 = +0.554 ,

which corresponds to much larger polarisation and hence a larger asymmetry A1 = −0.253

in frame M . This requires only NM ≈ 140 events to measure A1 with 3σ significance. The

azimuthal distribution for this beam polarisation is shown in figure 4 in both the frames

M and F . In frame F , however the asymmetry A1 is smaller, see table 3, hence we need

a larger number of events, NF ≈ 410, to measure it with 3σ significance. Thus, one needs

max(NM , NF ) = 410 events to confirm the spin of t-quark to be at least 1
2 with this choice

of beam polarisation, which is a large improvement over the unpolarised case. To rule out

higher asymmetries with a higher degree of significance one still needs a larger number of

events than this.

Next we discuss the case when the transverse polarisation of t-quark, η1, is zero. We

arrange this by tuning the beam polarisations to appropriate values. This leads to A1 ≈ 0,

and hence in frame M the fit gives a1/a0 ≈ 0, and a flat distribution as shown in figure 5.

The top polarisations in this case are given as

(Pe− , Pe+) = (+0.792,+0.60) : η1 = 0.000, η2 = 0.000, η3 = +0.080 .
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2π
/σ

 d
σ/

dφ  0.96

 0.98

 1

 1.02

 1.04 Frame: M(Pe-, Pe+) = (+0.792, +0.60)

Figure 5. The azimuthal distribution same as in figure 4 for (Pe− , Pe+) = (+0.792, +0.60). This is

special case when the distribution is flat in frame M and frame F is needed for spin determination.

We note that the longitudinal polarisation of t-quark, η3, though small is not zero and hence

in frame F this leads to a non-zero value of the asymmetry A1 and the cos φ modulation

as seen in figure 5. In this case NF ≈ 2 104 events are required to measure this asymmetry

at 3σ significance. This example re-imposes the need for a second frame F in association

with the helicity frame M to measure and re-confirm the spin of a particle.

4.2 Spin–1 case: W -boson

The W boson analysis is a much better advocate for the need of frame F , beside frame M .

In the process under consideration, the W -bosons are produced (almost) on-mass-shell as a

decay product of t-quark. Since the coupling of W -boson is chiral, they are produced with

high polarisation even in the decay of unpolarised top quarks. For the same set of events

as used for the case of top quarks, the vector polarisations of the W -boson are given by

(Pe− , Pe+) = (+0.80,−0.60) : px = +0.355, py = 0.000, pz = 0.000 .

From eq. (3.4) we know that the coefficient of the cos φ modulation is proportional to px

and non-zero in this case. The coefficient of cos 2φ modulation is proportional to tensor

polarisation (Txx − Tyy), which happens to be zero5 for this process in the helicity frame

M . This leads to only cos φ modulation of the azimuthal distribution as seen in figure 6

5We note that the asymmetry A2 is zero in the helicity frame M for on-shell W bosons, but numerically

we find it to be small but non-zero as the decay width of W is not very small and there is a non-negligible

contribution from off-shell W s.
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Figure 6. The azimuthal distribution of lepton from decay of W -boson is plotted for (Pe− , Pe+) =

(+0.80,−0.60) in frame M (top) and in frame F (below) using 2 × 106 events at partonic level

(histogram). The best fit (green/grey line) to F4(φ) leads to the coefficient of the cosφ and cos 2φ

modulation to be non-zero in frame F (given in table 4) and all other modulations are absent in

both the frames indicating the spin of W -boson to be 1. The red (dark grey) line show only the

cosφ modulation of the distribution.

(Pe− , Pe+) Quantities Frame M Frame F Reference

(+0.80,−0.60)

A1 −0.266 −0.038

figure 6
A2 ≈ 0 −0.054

a1/a0 −0.418 −0.059

a2/a0 ≈ 0 −0.086

(+0.75,+0.60)

A1 ≈ 0 −0.093

figure 7
A2 ≈ 0 −0.026

a1/a0 ≈ 0 −0.147

a2/a0 ≈ 0 −0.041

Table 4. The table of asymmetries A1 & A2 and the fit parameter a1/a0 & a2/a0 for lepton’s

distribution from W -boson decay for different initial state polarisations in frames M and F . We

have the relation ai/a0 = πAi/2, which is also observed numerically within tolerance (±10−3).

for frame M . Using the helicity amplitudes given in appendix C.1, one can write the
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production density matrix for W -boson, which is produced in the decay of t-quark, and

we easily see that ρW (+1,−1) = ρW (−1,+1) = 0 in the helicity frame M due to angular

momentum conservation. Here, a higher spin (spin–1) particle is produced in the decay

process of lower spin (spin–1
2), thus it can not span all its helicity states for fixed helicities

of other particles and hence leads to ρW (±1,∓1) = 0. This is proven for the general case

in appendix D in the helicity frame. However, in the boosted frame F the asymmetry

A2 measures TF
xx − TF

yy, which is non-zero in general, see eq. (3.14). In frame F we find

A2 = −0.054 which leads to a cos 2φ modulation of the azimuthal angle in this frame,

see figure 6. Here NF = 3100 events will be required to measure A2 with 3σ significance.

Further, all the higher Ajs (Aj>2) are found to be zero in both frames proving that the

particle under consideration to be spin–1 and its production process to be CP -conserving.

The asymmetries and fit parameters are listed in table 4 for both the frames.

Next we look at a case where the azimuthal distribution in the helicity frame M is flat

which would wrongly suggest that the particle is a scalar. The various vector polarisations

are given as

(Pe− , Pe+) = (+0.75,+0.60) : px = +0.000, py = 0.000, pz = 0.193 .

In the helicity frame M , the asymmetry A2 is zero due to the angular momentum conser-

vation and A1 is zero because it is proportional to px, which is zero for the chosen initial

state beam polarisations. The W -boson appears to be spin–0 in this frame M with this

particular beam polarisations. The asymmetries Aj and the fit parameters aj/a0 are listed

in table 4 for this case and the corresponding azimuthal distributions are plotted in figure 7.

Changing over to frame F leads to non-zero values of both A1 and A2, see table 4, and the

corresponding azimuthal distribution visibly has the cos 2φ modulation, figure 7. In this

case NF ≈ 1.3 × 104 events are required to measure A2 with 3σ significance. This is the

best example of a case where one needs a frame other than the helicity frame to confirm

the spin of the particle, which is polarised with pz 6= 0 and Tzz 6= 0. We, however, note

that this process is not the best process to study the spin of W -boson. For this purpose

one should look at the pair production process e+e− → W+W− as discussed in ref. [25].

Thus we conclude that one needs two different reference frames to measure and re-

confirm the spin of a particle using the same set of events. Further, if the event set

includes a cascade decay, one can construct the asymmetries for different particles using

the spin vector si for different particles and using the momentum pB of different final state

particles. For example, in the above case, we could have used the momentum of the b-quark

to construct the asymmetries in place of the leptons. In the events with hadronic decay

of W s, one could use either of the jets to construct the correlators and hence the asym-

metries. Thus, using different final state particles, we can find a larger set of asymmetries

to re-confirm the spin of a particle, however we can not improve the significance of the

measurement by combining different correlators for the same set of events. A larger event

sample is necessary to improve the statistical significance of the measurements.
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Figure 7. The azimuthal distribution same as in figure 6 for (Pe− , Pe+) = (+0.75, +0.60). This is

special case where frame M has flat distribution and frame F is needed for the spin determination.

5 Discussions and conclusions

In this paper, we constructed observables to measure the spin of a heavy unstable particle

produced at a collider by harvesting the spin dependence of the azimuthal distribution

through the quantum interference between the different helicity states, i.e the non diagonal

elements of the helicity density matrix. The aim is to construct observables that are

sensitive to the highest rank–2s tensor polarisation of a particle with spin–s that lead

to a cos 2sφ modulation of the azimuthal distribution. Such a method has been known

for a long time and we have provided an analytical understanding of it. In particular,

the novelty of our approach is the construction of two reference frames where in one of

them the spin basis is subjected to a Wick rotation. The latter mixes the longitudinal

polarisation and the transverse polarisation in the production plane and therefore the spin

modulation in the azimuthal angle is sensitive to this mixture whereas in the standard

approach the longitudinal polarisation is integrated away and does not contribute to the

usual azimuthal asymmetries. The construction of two frames allows within the same

experiment and with the same event sample to cross check the spin measurement based

on azimuthal asymmetries. In some cases this can be crucial since the usual transverse

polarisation tensor/vector can be zero either accidentally or for a dynamical reason and

therefore would lead to a wrong conclusion. This can be rescued in the second frame

provided the longitudinal polarisation is not zero as well. We have shown examples in the

decay of the top and the W where this occurs with SM production and decay mechanisms.
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In the appendices we consider more general couplings and decays than those that describe

the SM particles. This helps in obtaining a set of conditions on the production and decay

mechanisms for some of the asymmetries to be non-zero and hence the spin to be measured.

One drawback of the method however, as outlined in the present paper, is that it requires

complete reconstruction of the test particle’s momentum which is necessary to build up

the needed spin vectors. If there are too many invisible particles this might not be possible

especially in a machine like the LHC where the partonic centre of mass energy is not fixed.

The same drawback also affects other methods of spin reconstruction. We feel however that

is worth investigating how the method we have described can be exploited in combination

with other methods or by making some mild assumption on the spectrum of the event or

the underlying physics.
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A Rotation matrices dj
m,n

(θ)

The general form of the d function is given in eq. (1.2). For completeness and although

these can be easily found in many textbooks, we explicitly write the d function up to spin–

2. To avoid clutter we take as short-hand notation c = cos(θ/2) and s = sin(θ/2) then all

the dj
m,n useful to our study are given below.

• j = 0: d0
0,0 = 1

• j = 1
2 : d

1

2
m,n =

[

c −s

s c

]

• j = 1: d1
m,n =









c2 −
√

2cs s2

√
2cs 2c2 − 1 −

√
2cs

s2
√

2cs c2









• j = 3
2 : d

3

2
m,n =















c3 −
√

3sc2
√

3s2c −s3

√
3sc2 c − 3s2c s − 3sc2

√
3s2c

√
3s2c −s + 3sc2 c − 3s2c −

√
3sc2

s3
√

3s2c
√

3sc2 c3














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• j = 2: d2
m,n =



















c4 −2sc3
√

6s2c2 −2s3c s4

2sc3 −3c2 + 4c4
√

6sc(s2 − c2) 3s2 − 4s4 −2s3c
√

6s2c2 −
√

6sc(s2 − c2) 1 − 6c2 + 6c4
√

6sc(s2 − c2)
√

6s2c2

2s3c 3s2 − 4s4 −
√

6sc(s2 − c2) −3c2 + 4c4 −2sc3

s4 2s3c
√

6s2c2 2sc3 c4



















B Decay density matrix for higher spin particle

As a short-hand notation we now define C = cos θ and S = sin θ which enter the expressions

for the density matrices of higher spin particles, namely s = 3/2 and s = 2 briefly discussed

in the main text. The corresponding normalised decay matrices are calculated from eq. (2.7)

and using the explicit expressions for the d matrices.

B.1 Spin-3
2 particle

For the decay |32 , l〉 → |s1, l1〉 + |s2, l2〉, the decay density matrix is given by

Γ
3

2

(

+
3

2
,+

3

2

)

=
(1 + 2γ1) + 3(α1 + α2)C + 3(1 − 2γ1)C

2 + (α2 − 3α1)C
3

8

Γ
3

2

(

+
3

2
,+

1

2

)

=

√
3 S [ (α1 + α2) + 2(1 − 2γ1)C + (α2 − 3α1)C

2 ]

8
eiφ

Γ
3

2

(

+
3

2
,−1

2

)

=

√
3 S2 [ (1 − 2γ1) + (α2 − 3α1)C ]

8
ei2φ

Γ
3

2

(

+
3

2
,−3

2

)

=
(α2 − 3α1)S

3

8
ei3φ

Γ
3

2

(

+
1

2
,+

3

2

)

=

√
3 S [ (α1 + α2) + 2(1 − 2γ1)C + (α2 − 3α1)C

2 ]

8
e−iφ

Γ
3

2

(

+
1

2
,+

1

2

)

=
(3 − 2γ1) + (3α2 − 5α1)C − 3(1 − 2γ1)C

2 − 3(α2 − 3α1)C
3 ]

8

Γ
3

2

(

+
1

2
,−1

2

)

=
S [ (3α2 − α1) − 3(α2 − 3α1)C

2 ]

8
eiφ

Γ
3

2

(

+
1

2
,−3

2

)

=

√
3 S2 [ (1 − 2γ1) − (α2 − 3α1)C ]

8
ei2φ

Γ
3

2

(

−1

2
,+

3

2

)

=

√
3 S2 [ (1 − 2γ1) + (α2 − 3α1)C ]

8
e−i2φ

Γ
3

2

(

−1

2
,+

1

2

)

=
S [ (3α2 − α1) − 3(α2 − 3α1)C

2 ]

8
e−iφ

Γ
3

2

(

−1

2
,−1

2

)

=
(3 − 2γ1) − (3α2 − 5α1)C − 3(1 − 2γ1)C

2 + 3(α2 − 3α1)C
3 ]

8

Γ
3

2

(

−1

2
,−3

2

)

=

√
3 S [ (α1 + α2) − 2(1 − 2γ1)C + (α2 − 3α1)C

2 ]

8
eiφ
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Γ
3

2

(

−3

2
,+

3

2

)

=
(α2 − 3α1)S

3

8
e−i3φ

Γ
3

2

(

−3

2
,+

1

2

)

=

√
3 S2 [ (1 − 2γ1) − (α2 − 3α1)C ]

8
e−i2φ

Γ
3

2

(

−3

2
,−1

2

)

=

√
3 S [ (α1 + α2) − 2(1 − 2γ1)C + (α2 − 3α1)C

2 ]

8
e−iφ

Γ
3

2

(

−3

2
,−3

2

)

=
(1 + 2γ1) − 3(α1 + α2)C + 3(1 − 2γ1)C

2 − (α2 − 3α1)C
3

8

(B.1)

where,

α1 =
a

3/2
1/2 − a

3/2
−1/2

∑

l a
3/2
l

, α2 =
a

3/2
3/2 − a

3/2
−3/2

∑

l a
3/2
l

, γ1 =
a

3/2
1/2 + a

3/2
−1/2

∑

l a
3/2
l

(B.2)

and

a
3/2
3/2 =

1

π

∑

l1

∣

∣

∣

∣

M3/2

l1,l1− 3

2

∣

∣

∣

∣

2

|l1| ≤ s1,

∣

∣

∣

∣

l1 −
3

2

∣

∣

∣

∣

≤ s2

a
3/2
1/2 =

1

π

∑

l1

∣

∣

∣

∣

M3/2

l1,l1− 1

2

∣

∣

∣

∣

2

|l1| ≤ s1,

∣

∣

∣

∣

l1 −
1

2

∣

∣

∣

∣

≤ s2

a
3/2
−1/2 =

1

π

∑

l1

∣

∣

∣

∣

M3/2

l1,l1+
1

2

∣

∣

∣

∣

2

|l1| ≤ s1,

∣

∣

∣

∣

l1 +
1

2

∣

∣

∣

∣

≤ s2

a
3/2
−3/2 =

1

π

∑

l1

∣

∣

∣

∣

M3/2

l1,l1+
3

2

∣

∣

∣

∣

2

|l1| ≤ s1,

∣

∣

∣

∣

l1 +
3

2

∣

∣

∣

∣

≤ s2

(B.3)

B.2 Spin-2 particle

For the decay |2, l〉 → |s1, l1〉 + |s2, l2〉, the decay density matrix is given by

Γ2(+2,+2) =
[

A0 + 4A1C + 6A2C
2 + 4A3C

3 + A4C
4
]

Γ2(+2,+1) = 2
[

A1 + 3A2C + 3A3C
2 + A4C

3
]

S eiφ

Γ2(+2,+0) =
√

6
[

A2 + 2A3C + A4C
2
]

S2 ei2φ

Γ2(+2,−1) = 2 [ A3 + A4C ] S3 ei3φ

Γ2(+2,−2) = A4 S4 ei4φ

Γ2(+1,+2) = 2
[

A1 + 3A2C + 3A3C
2 + A4C

3
]

S e−iφ

Γ2(+1,+1) = 4
[

1 + 2(A1 − 3β)C − 3A2C
2 − 2A3C

3 − A4C
4
]

Γ2(+1,+0) = 2
√

6
[

2(β + A2C) + S2 (A3 + A4C)
]

S eiφ

Γ2(+1,−1) = 4
[

3A2 + A4S
2
]

S2 ei2φ

Γ2(+1,−2) = 2 [ A3 − A4C ] S3 ei3φ
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Γ2(+0,+2) =
√

6
[

A2 + 2A3C + A4C
2
]

S2 e−i2φ

Γ2(+0,+1) = 2
√

6
[

2(β + A2C) + S2 (A3 + A4C)
]

S e−iφ

Γ2(+0,+0) = 4
[

4δ + 3A2S
2 + 3A4S

4
]

Γ2(+0,−1) = 2
√

6
[

2(β − A2C) + S2 (A3 − A4C)
]

S eiφ

Γ2(+0,−2) =
√

6
[

A2 − 2A3C + A4C
2
]

S2 ei2φ

Γ2(−1,+2) = 2 [ A3 + A4C ] S3 e−i3φ

Γ2(−1,+1) = 4
[

3A2 + A4S
2
]

S2 e−i2φ

Γ2(−1,+0) = 2
√

6
[

2(β − A2C) + S2 (A3 − A4C)
]

S e−iφ

Γ2(−1,−1) = 4
[

1 − 2(A1 − 3β)C − 3A2C
2 + 2A3C

3 − A4C
4
]

Γ2(−1,−2) = 2
[

A1 − 3A2C + 3A3C
2 − A4C

3
]

S eiφ

Γ2(−2,+2) = A4 S4 e−i4φ

Γ2(−2,+1) = 2 [ A3 − A4C ] S3 e−i3φ

Γ2(−2,+0) =
√

6
[

A2 − 2A3C + A4C
2
]

S2 e−i2φ

Γ2(−2,−1) = 2
[

A1 − 3A2C + 3A3C
2 − A4C

3
]

S e−iφ

Γ2(−2,−2) =
[

A0 − 4A1C + 6A2C
2 − 4A3C

3 + A4C
4
]

(B.4)

where,

A0 =
a2

2 + 4a2
1 + 6a2

0 + 4a2
−1 + a2

−2

16
∑

l a
2
l

,

A1 =
a2

2 + 2a2
1 − 2a2

−1 − a2
−2

16
∑

l a
2
l

,

A2 =
a2

2 − 2a2
0 + a2

−2

16
∑

l a
2
l

,

A3 =
a2

2 − 2a2
1 + 2a2

−1 − a2
−2

16
∑

l a
2
l

,

A4 =
a2

2 − 4a2
1 + 6a2

0 − 4a2
−1 + a2

−2

16
∑

l a
2
l

,

β =
a2

1 − a2
−1

∑

l a
2
l

, δ =
a2

0
∑

l a
2
l

(B.5)

and

a2
2 =

5

4π

∑

l1

|M2
l1,l1−2|2 |l1| ≤ s1, |l1 − 2| ≤ s2

a2
1 =

5

4π

∑

l1

|M2
l1,l1−1|2 |l1| ≤ s1, |l1 − 1| ≤ s2

a2
0 =

5

4π

∑

l1

|M2
l1,l1 |

2 |l1| ≤ min s1, s2

a2
−1 =

5

4π

∑

l1

|M2
l1,l1+1|2 |l1| ≤ s1, |l1 + 1| ≤ s2
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a2
−2 =

5

4π

∑

l1

|M2
l1,l1+2|2 |l1| ≤ s1, |l1 + 2| ≤ s2. (B.6)

C Helicity amplitudes and the analysing power

In this section we give expressions for the helicity amplitudes pertaining to 2-body de-

cay processes of spin–1
2 and spin–1 particles. The expressions are derived for a general

dimension-4 effective operator describing the coupling of the particles. This will permit to

give the different analysing power coefficients.

We take the mass of the mother particle to be m and that of daughters to be m1 and

m2, the polar and azimuthal angle belongs to the first particle with mass m1. The energy

and the momentum of the daughter particles are given as

E1 =
m2 + m2

1 − m2
2

2m
, E2 =

m2 + m2
2 − m2

1

2m
,

p =

√

((m + m2)2 − m2
1)((m + m1)2 − m2

2)

2m
(C.1)

from 2-body decay kinematics. Below we discuss the 2-body decay of a fermion and a

vector boson into two massive particles.

C.1 Decay: |12 , λ〉 → |12 , λ1〉 + |1, λ2〉

For this decay the helicity for the fermion λ = ±1/2 will be denoted as λ = ±1/2 and for

the bosons λ = ±1 as λ = ± such that the helicity M(λ, λ1, λ2) writes as M(+,+,+) =

M(+1
2 ,+1

2 ,+1).

The decay vertex it taken to be f̄1γ
µ (CLPL+CRPR)f2Vµ with real CL,R and the amplitudes

are listed below in the rest frame of the decaying particle:

M(+,+,+) =
[

−(CL P−
1 − CR P+

1 )
]

e
+iφ
2

(

− sin
θ

2

)

M(+,+, 0) =
[

−(CL P−
1 P−

2 − CR P+
1 P+

2 )
]

e
+iφ
2

(

+ cos
θ

2

)

M(+,+,−) = 0

M(+,−,+) = 0

M(+,−, 0) =
[

+(CL P+
1 P+

2 − CR P−
1 P−

2 )
]

e
+iφ
2

(

− sin
θ

2

)

M(+,−,−) =
[

+(CL P+
1 − CR P−

1 )
]

e
+iφ
2

(

+ cos
θ

2

)

M(−,+,+) =
[

−(CL P−
1 − CR P+

1 )
]

e
−iφ
2

(

+ cos
θ

2

)

M(−,+, 0) =
[

−(CL P−
1 P−

2 − CR P+
1 P+

2 )
]

e
−iφ
2

(

+ sin
θ

2

)

M(−,+,−) = 0

M(−,−,+) = 0
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M(−,−, 0) =
[

+(CL P+
1 P+

2 − CR P−
1 P−

2 )
]

e
−iφ
2

(

+ cos
θ

2

)

M(−,−,−) =
[

+(CL P+
1 − CR P−

1 )
]

e
−iφ
2

(

+ sin
θ

2

)

(C.2)

Here, the terms in the square brackets are the reduced matrix elements, (Ms
λ1,λ2

/
√

2π)

and the ds
λ,λ1−λ2

functions are enclosed in round brackets. The symbols P±
1,2 are defined as

P±
1 =

√
m

E1 + m1 ± p√
E1 + m1

, P±
2 =

1√
2

√

E2 ± p

E2 ∓ p
. (C.3)

Using the expressions of the reduced matrix elements, the analysing power α for this decay

can be written as

α =
(C2

R − C2
L)(1 − x2

1 − 2x2
2)
√

1 + (x2
1 − x2

2)
2 − 2(x2

1 + x2
2)

(C2
R + C2

L)(1 − 2x2
1 + x2

2 + x2
1x

2
2 + x4

1 − 2x4
2) − 12CLCRx1x2

2

, (C.4)

where xi = mi/m. For the decay of top quark, t → bW , with m1 = mb = 0 within the SM

we have CR = 0 leading to α = −(1 − 2x2
2)/(1 + 2x2

2) ∼ −0.38.

C.2 Decay: |12 , λ〉 → |12 , λ1〉 + |0, 0〉
As done in the previous section the helicity for the fermions λ = ±1/2 will be denoted as

λ = ±1/2 such that the helicity M(λ, λ1 writes as M(+,+) for M(+1
2 ,+1

2).

For this decay the helicity amplitudes, M(λ, λ1) = M(+,+) = M(+1
2 ,+1

2). The decay

vertex it taken to be f̄1γ
µ (CLPL + CRPR)f2 S with complex CL,R and all the amplitudes

are listed below:

M(+,+) =

[

CR P−
1 + CL P+

1√
2

]

e
+iφ
2

(

+ cos
θ

2

)

M(+,−) =

[

CR P+
1 + CL P−

1√
2

]

e
+iφ
2

(

− sin
θ

2

)

M(−,+) =

[

CR P−
1 + CL P+

1√
2

]

e
−iφ
2

(

+ sin
θ

2

)

M(−,−) =

[

CR P+
1 + CL P−

1√
2

]

e
−iφ
2

(

+ cos
θ

2

)

(C.5)

Here, the reduced matrix elements, (Ms
λ1,0/

√
2π), are given in square brackets and the

ds
λ,λ1

functions in the round brackets. The symbols P±
1 are same as in eq. (C.3). Using the

expressions of reduced matrix elements we get the expression for α, the analysing power of

the spin–1
2 particle, as

α =
−(|CR|2 − |CL|2)

√

1 + (x2
1 − x2

2)
2 − 2(x2

1 + x2
2)

(|CR|2 + |CL|2)(1 + x2
1 − x2

2) + 4x1ℜ(CLC∗
R)

, (C.6)

where xi = mi/m. Thus we need the scalar to have parity violating couplings, |CL| 6= |CR|,
for the analysing power to be non-zero. However, for a neutral scalar, say the neutral Higgs
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boson of the MSSM, we have CL = C∗
R in other words |CL| = |CR| leading to α = 0. The

same occurs in a CP conserving MSSM with any of the neutral Higgs boson. Thus we

should chose processes involving squarks for spin measurement in the decay of gauginos.

C.3 Decay: |1, λ〉 → |12 , λ1〉 + |12 , λ2〉
We take the same convention as in C.1 with the same operator for the interaction. We find

M(+,+,+) =

[

−i
CR p+

1 p−2 + CL p−1 p+
2

2

]

e+iφ

(−1√
2

sin θ

)

M(+,+,−) =

[

+i
CR p+

1 p+
2 + CL p−1 p−2√

2

]

e+iφ

(

cos2 θ

2

)

M(+,−,+) =

[

−i
CR p−1 p−2 + CL p+

1 p+
2√

2

]

e+iφ

(

sin2 θ

2

)

M(+,−,−) =

[

+i
CR p−1 p+

2 + CL p+
1 p−2

2

]

e+iφ

(−1√
2

sin θ

)

M(0,+,+) =

[

−i
CR p+

1 p−2 + CL p−1 p+
2

2

]

(cos θ)

M(0,+,−) =

[

+i
CR p+

1 p+
2 + CL p−1 p−2√

2

] (

+1√
2

sin θ

)

M(0,−,+) =

[

−i
CR p−1 p−2 + CL p+

1 p+
2√

2

] (−1√
2

sin θ

)

M(0,−,−) =

[

+i
CR p−1 p+

2 + CL p+
1 p−2

2

]

(cos θ)

M(−,+,+) =

[

−i
CR p+

1 p−2 + CL p−1 p+
2

2

]

e−iφ

(

+1√
2

sin θ

)

M(−,+,−) =

[

+i
CR p+

1 p+
2 + CL p−1 p−2√

2

]

e−iφ

(

sin2 θ

2

)

M(−,−,+) =

[

−i
CR p−1 p−2 + CL p+

1 p+
2√

2

]

e−iφ

(

cos2 θ

2

)

M(−,−,−) =

[

+i
CR p−1 p+

2 + CL p+
1 p−2

2

]

e−iφ

(

+1√
2

sin θ

)

(C.7)

In eq. (C.7) the terms in the square bracket stand for the reduced matrix elements

(Ms
λ1,λ2

√

3
4π ), the terms in the round brackets are the ds

λ,λ1−λ2
functions. The symbols

p±1,2 are defined as

p±1 =
E1 + m1 ± p√

E1 + m1
, p±2 =

E2 + m2 ± p√
E2 + m2

, (C.8)

Using the expressions for as
l and reduced matrix element we get expressions for two pa-

rameter α and δ as

α =
2(C2

R − C2
L)
√

1 + (x2
1 − x2

2)
2 − 2(x2

1 + x2
2)

12CLCRx1x2 + (C2
R + C2

L)[2 − (x2
1 − x2

2)
2 + (x2

1 + x2
2)]

, (C.9)

δ =
4CLCRx1x2 + (C2

R + C2
L)[(x2

1 + x2
2) − (x2

1 − x2
2)

2]

12CLCRx1x2 + (C2
R + C2

L)[2 − (x2
1 − x2

2)
2 + (x2

1 + x2
2)]

, (C.10)
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where xi = mi/m.

If the final state fermions are massless, x1 → 0, x2 → 0, one obtains α → (C2
R−C2

L)/(C2
R +

C2
L) and δ → 0. This is the case for the decay of W and Z bosons into massless fermions.

Further, for the decay of W s, within the SM we have CR = 0 hence α = −1.

C.4 Decay: |1, λ〉 → |1, λ1〉 + |0, 0〉
For this decay the helicity amplitudes, M(λ, λ1) = M(+,+) = M(+1,+1). The decay ver-

tex it taken to be CV V SgµνV µV ν
1 with real CV V S and the helicity amplitudes are given by:

M(+,+) = [−CV V S] e+iφ

(

cos2 θ

2

)

M(+, 0) =

[

−CV V S
E1

m1

]

e+iφ

(− sin θ√
2

)

M(+,−) = [−CV V S] e+iφ

(

sin2 θ

2

)

M(0,+) = [−CV V S]

(

sin θ√
2

)

M(0, 0) =

[

−CV V S
E1

m1

]

(cos θ)

M(0,−) = [−CV V S]

(− sin θ√
2

)

M(−,+) = [−CV V S] e−iφ

(

sin2 θ

2

)

M(−, 0) =

[

−CV V S
E1

m1

]

e−iφ

(

sin θ√
2

)

M(−,−) = [−CV V S] e−iφ

(

cos2 θ

2

)

(C.11)

This leads to a1
1 = a1

−1 hence α = 0. δ is given by

δ =
(1 + x2

1 − x2
2)

2

1 + (x2
1 − x2

2)
2 + 2(5x2

1 − x2
2)

. (C.12)

Such decays occur the models of extra-dimensions, for example, W (1) → W (0)h, Z(1) →
Z(0)h etc.

C.5 Decay: |1, λ〉 → |1, λ1〉 + |1, λ2〉
For this decay the helicity amplitudes, M(λ, λ1, λ2) = M(+,+,+) = M(+1,+1,+1). The

decay vertex is taken to be CV V V TµνρV
µV ν

1 V ρ
2 where CV V V is real. We only assume here

a standard gauge tri-linear coupling

Tµνρ = [gµν(q − p1)ρ + gνρ(p1 − p2)µ + gρµ(p2 − q)ν ]

with q being the 4-momentum of the mother particle and p1,2 is the 4-momentum of the

daughter particles. All momenta are assumed incoming at the interaction vertex. With
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this notation the non-zero helicity amplitudes are given by:

M(+,+,+) = [2CV V V p] e+iφ

(− sin θ√
2

)

M(+, 0, 0) =

[

−2CV V V p
E1E2 + p2

m1m2

]

e+iφ

(− sin θ√
2

)

M(+,−,−) = [2CV V V p] e+iφ

(− sin θ√
2

)

M(0,+,+) = [2CV V V p] (cos θ)

M(0, 0, 0) =

[

−2CV V V p
E1E2 + p2

m1m2

]

(cos θ)

M(0,−,−) = [2CV V V p] (cos θ)

M(−,+,+) = [2CV V V p] e−iφ

(− sin θ√
2

)

M(−, 0, 0) =

[

−2CV V V p
E1E2 + p2

m1m2

]

e−iφ

(− sin θ√
2

)

M(−,−,−) = [2CV V V p] e−iφ

(− sin θ√
2

)

(C.13)

This leads to a1
1 = a1

−1 = 0 and hence α = 0 and δ = 1. Example of such decays, in the

models of extra-dimensions, are W (1) → W (0)Z(0), W (1) → W (0)γ(0) etc.

Above we saw that the parameters α and δ have a simple expressions in terms of

masses and couplings of the particles involved. This can be simply added to a spectrum

generation code, such as SOFTSUSY [37], SuSpect [38], SPheno [39] for SUSY models, and

one can quickly know which decay channel is the best for estimation of the particle’s spin.

D Higher spin particle disguising as lower spin particle

If a higher spin particle is produced as a decay product of the lower spin particle, its spin

orientations are restricted. This makes the particle appear as of a lower spin in frame M

see section 4.2. Since the total differential rate is the product of production and decay

density matrices,

dσ =
1

2I
ρs(l, l′) × Γs(l, l′) dΦn .

Thus, for the decay distribution to have a 2sφ modulation, we must have ρs(s,−s) =

ρs∗(−s, s) 6= 0. Now if this spin s particle were produced in the decay reaction |j,m〉 →
|s1, l1〉 + |s, l〉, then the production density matrix is given by

ρs(l, l′) =
∑

m,l1

M jm
l1,l M jm∗

l1,l′

=

(

2j + 1

4π

)

ei(l−l′)φ
∑

m,l1

dj
m,l1−l dj

m,l1−l′ Mj
l1,lM

j∗
l1,l′. (D.1)

Thus we have extreme off-diagonal term given by

ρs(s,−s) =

(

2j + 1

4π

)

ei2sφ
∑

m,l1

dj
m,l1−s dj

m,l1+s Mj
l1,lM

j∗
l1,l′ . (D.2)
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For this to be non-zero, we must have

|l1 − s| ≤ j and |l1 + s| ≤ j

for at least one value of l1. However, this condition is never satisfied (for any l1) when we

have s > j, i.e. ρs(s,−s) = 0 for s > j. This leads to the absence of the highest mode

in the φ distribution in frame M . This is numerically demonstrated for the sample of W

boson production from the decay of t-quark. Since the helicities are invariant only under

the boost along the momentum (which does not changes the direction of the momentum),

the density matrix goes through a similarity transformation when boosted in any other

direction. Thus in frame F , in general one can have a non-zero value for ρs(s,−s) and

hence the 2sφ modulation of the azimuthal distribution.
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[12] C. Csáki, J. Heinonen and M. Perelstein, Testing gluino spin with three-body decays,

JHEP 10 (2007) 107 [arXiv:0707.0014] [SPIRES].

[13] A. Rajaraman and B.T. Smith, Determining spins of metastable sleptons at the large hadron

collider, Phys. Rev. D 76 (2007) 115004 [arXiv:0708.3100] [SPIRES].

– 36 –

http://dx.doi.org/10.1016/S0370-2693(02)03191-X
http://arxiv.org/abs/hep-ph/0210077
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0210077
http://dx.doi.org/10.1016/j.physletb.2004.06.074
http://arxiv.org/abs/hep-ph/0405052
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0405052
http://dx.doi.org/10.1088/1126-6708/2005/10/069
http://arxiv.org/abs/hep-ph/0507170
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0507170
http://dx.doi.org/10.1088/1126-6708/2006/02/042
http://arxiv.org/abs/hep-ph/0511115
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0511115
http://dx.doi.org/10.1103/PhysRevD.74.015010
http://arxiv.org/abs/hep-ph/0601124
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0601124
http://dx.doi.org/10.1103/PhysRevD.74.095010
http://arxiv.org/abs/hep-ph/0605067
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605067
http://dx.doi.org/10.1088/1126-6708/2006/08/055
http://arxiv.org/abs/hep-ph/0605286
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605286
http://arxiv.org/abs/hep-ph/0606212
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0606212
http://dx.doi.org/10.1088/1126-6708/2007/04/032
http://arxiv.org/abs/hep-ph/0605296
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605296
http://dx.doi.org/10.1140/epjc/s10052-007-0330-7
http://arxiv.org/abs/hep-ph/0609296
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0609296
http://dx.doi.org/10.1088/1126-6708/2007/05/052
http://arxiv.org/abs/hep-ph/0703085
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0703085
http://dx.doi.org/10.1103/PhysRevD.75.115013
http://arxiv.org/abs/0704.0254
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.0254
http://dx.doi.org/10.1088/1126-6708/2007/10/107
http://arxiv.org/abs/0707.0014
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0707.0014
http://dx.doi.org/10.1103/PhysRevD.76.115004
http://arxiv.org/abs/0708.3100
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.3100


J
H
E
P
0
7
(
2
0
0
9
)
0
2
8

[14] L.-T. Wang and I. Yavin, A review of spin determination at the LHC,

Int. J. Mod. Phys. A 23 (2008) 4647 [arXiv:0802.2726] [SPIRES].

[15] G.L. Kane, A.A. Petrov, J. Shao and L.-T. Wang, Initial determination of the spins of the

gluino and squarks at LHC, arXiv:0805.1397 [SPIRES].

[16] S.J. Reinartz, A decay chain spin analysis for SUSY and UED at the LHC,

arXiv:0805.2052 [SPIRES].

[17] P. Osland, A.A. Pankov, N. Paver and A.V. Tsytrinov, Spin identification of the

Randall-Sundrum resonance in lepton-pair production at the LHC,

Phys. Rev. D 78 (2008) 035008 [arXiv:0805.2734] [SPIRES].

[18] M. Burns, K. Kong, K.T. Matchev and M. Park, A general method for model-independent

measurements of particle spins, couplings and mixing angles in cascade decays with missing

energy at hadron colliders, JHEP 10 (2008) 081 [arXiv:0808.2472] [SPIRES].

[19] A. Alves, O.J.P. Eboli, M.C. Gonzalez-Garcia and J.K. Mizukoshi, Deciphering the spin of

new resonances in Higgsless models, arXiv:0810.1952 [SPIRES].

[20] W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, MT2-assisted on-shell reconstruction of

missing momenta and its application to spin measurement at the LHC, Phys. Rev. D 79

(2009) 031701 [arXiv:0810.4853] [SPIRES].

[21] J.A. Aguilar-Saavedra, Sneutrino cascade decays ν̄e → e−X̄+

1 → e−f f̄ ′X̄0
1 as a probe of

chargino spin properties and CP-violation, Nucl. Phys. B 717 (2005) 119 [hep-ph/0410068]

[SPIRES].

[22] M. Battaglia, A. Datta, A. De Roeck, K. Kong and K.T. Matchev, Contrasting

supersymmetry and universal extra dimensions at the CLIC multi-TeV e+e− collider,

JHEP 07 (2005) 033 [hep-ph/0502041] [SPIRES].

[23] S.Y. Choi, K. Hagiwara, H.U. Martyn, K. Mawatari and P.M. Zerwas, Spin analysis of

supersymmetric particles, Eur. Phys. J. C 51 (2007) 753 [hep-ph/0612301] [SPIRES].

[24] M.R. Buckley, H. Murayama, W. Klemm and V. Rentala, Discriminating spin through

quantum interference, Phys. Rev. D 78 (2008) 014028 [arXiv:0711.0364] [SPIRES].

[25] M.R. Buckley, B. Heinemann, W. Klemm and H. Murayama, Quantum interference effects

among helicities at LEP-II and tevatron, Phys. Rev. D 77 (2008) 113017 [arXiv:0804.0476]

[SPIRES].

[26] M.R. Buckley, S.Y. Choi, K. Mawatari and H. Murayama, Determining spin through quantum

azimuthal-angle correlations, Phys. Lett. B 672 (2009) 275 [arXiv:0811.3030] [SPIRES].

[27] H.E. Haber, Spin formalism and applications to new physics searches, hep-ph/9405376

[SPIRES].

[28] D.M. Brink and G.R. Satchler, Angular momentum, Oxford University Press, London U.K.

(1968).

[29] T.D. Lee and C.-N. Yang, Possible determination of the spin of Λ0 from its large dacay

angular asymmetry, Phys. Rev. 109 (1958) 1755 [SPIRES].

[30] M. Daumens, G. Massas and P. Minnaert, Spin tests from angular correlations in sequential

decays, Phys. Rev. D 12 (1975) 291 [SPIRES].

[31] P.S. Bhupal Dev, A. Djouadi, R.M. Godbole, M.M. Muhlleitner and S.D. Rindani,

Determining the CP properties of the Higgs boson, Phys. Rev. Lett. 100 (2008) 051801

[arXiv:0707.2878] [SPIRES].

– 37 –

http://dx.doi.org/10.1142/S0217751X08042778
http://arxiv.org/abs/0802.2726
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.2726
http://arxiv.org/abs/0805.1397
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.1397
http://arxiv.org/abs/0805.2052
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.2052
http://dx.doi.org/10.1103/PhysRevD.78.035008
http://arxiv.org/abs/0805.2734
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.2734
http://dx.doi.org/10.1088/1126-6708/2008/10/081
http://arxiv.org/abs/0808.2472
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.2472
http://arxiv.org/abs/0810.1952
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.1952
http://arxiv.org/abs/0810.4853
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.4853
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.041
http://arxiv.org/abs/hep-ph/0410068
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0410068
http://dx.doi.org/10.1088/1126-6708/2005/07/033
http://arxiv.org/abs/hep-ph/0502041
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0502041
http://dx.doi.org/10.1140/epjc/s10052-007-0367-7
http://arxiv.org/abs/hep-ph/0612301
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0612301
http://dx.doi.org/10.1103/PhysRevD.78.014028
http://arxiv.org/abs/0711.0364
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.0364
http://dx.doi.org/10.1103/PhysRevD.77.113017
http://arxiv.org/abs/0804.0476
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0476
http://dx.doi.org/10.1016/j.physletb.2009.01.034
http://arxiv.org/abs/0811.3030
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.3030
http://arxiv.org/abs/hep-ph/9405376
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9405376
http://dx.doi.org/10.1103/PhysRev.109.1755
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,109,1755
http://dx.doi.org/10.1103/PhysRevD.12.291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D12,291
http://dx.doi.org/10.1103/PhysRevLett.100.051801
http://arxiv.org/abs/0707.2878
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0707.2878


J
H
E
P
0
7
(
2
0
0
9
)
0
2
8

[32] A. Sommerfeld, Atomic structure and spectral lines, Methuen London U.K. (1934);

L.I. Schiff, Quantum mechanics, third edition, McGraw-Hill (1981), pg. 138;
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